Search this site
Embedded Files
SKA SDC3
  • Overview
  • Challenges
    • Foregrounds
      • Scoring code
      • Teams
      • Leaderboard
      • Rules
      • Data
      • Test Data
    • Inference
      • Scoring code
      • Teams
      • Rules
      • Data
      • Test data
      • Results
  • HPC Partners
    • ASTRON/SURF
    • CESGA
    • ChinaSRC
    • GENCI-IDRIS
    • INAF
    • IRIS-CAM
    • IRIS-MAN
    • JPSRC
    • SPSRC
    • Swiss SRC
    • UC-LCA
    • SweSRC
  • Registration
    • Foregrounds
    • Inference
  • Reproducibility Badges
  • Forum
  • FAQs
SKA SDC3
  • Overview
  • Challenges
    • Foregrounds
      • Scoring code
      • Teams
      • Leaderboard
      • Rules
      • Data
      • Test Data
    • Inference
      • Scoring code
      • Teams
      • Rules
      • Data
      • Test data
      • Results
  • HPC Partners
    • ASTRON/SURF
    • CESGA
    • ChinaSRC
    • GENCI-IDRIS
    • INAF
    • IRIS-CAM
    • IRIS-MAN
    • JPSRC
    • SPSRC
    • Swiss SRC
    • UC-LCA
    • SweSRC
  • Registration
    • Foregrounds
    • Inference
  • Reproducibility Badges
  • Forum
  • FAQs
  • More
    • Overview
    • Challenges
      • Foregrounds
        • Scoring code
        • Teams
        • Leaderboard
        • Rules
        • Data
        • Test Data
      • Inference
        • Scoring code
        • Teams
        • Rules
        • Data
        • Test data
        • Results
    • HPC Partners
      • ASTRON/SURF
      • CESGA
      • ChinaSRC
      • GENCI-IDRIS
      • INAF
      • IRIS-CAM
      • IRIS-MAN
      • JPSRC
      • SPSRC
      • Swiss SRC
      • UC-LCA
      • SweSRC
    • Registration
      • Foregrounds
      • Inference
    • Reproducibility Badges
    • Forum
    • FAQs

Science Data Challenge 3

Inference

Results

Scoring

Teams

Results

Rules

Data

Test Data

A note of caution when interpreting the scores: since the EoR signal has not yet been detected, various models exist, each producing different predictions. As such, the challenge scores do not reflect absolute accuracy. A high score may result from an inference model that happens to align closely with the simulation model used to generate the data—this does not necessarily indicate better agreement with real observational data. 


PS1 results (simulator: pyC2Ray)

Marginalised 1D probability for the neutral fraction for all teams (lines), compared with the input range (shaded area)

Top teams scoring over 0.1

  1. Cantabrigians

  2. Imperial-Notthingham

  3. ToSKA-SBI general

  4. ToSKA-model selection

  5. Shuimu-Tianlai C

  6. Shuimu-Tianlai B

  7. Shuimu-Tianlai A

  8. EoR-PIE

  9. Loreli B

  10. 21 To Infinities

  11. RISE

  12. COTSS-21

  13. Historians ANN

PS2 results (simulator: py21cmFAST)

Marginalised 1D probability for the neutral fraction for all teams (lines), compared with the input range (shaded area)

Top 10 scoring teams:

Top teams scoring over 0.1

  1. Cantabrigians

  2. Akashanga

  3. Mordern SEarCH

  4. Traditional SEarCH

  5. ToSKA-model selection

  6. ToSKA Explicit likelihood

  7. YEYE

  8. Imperial-Nottingham

  9. COTSS-21

  10. Shuimu-Tianlai A

  11. ToSKA-SBI general

  12. EoR-PIE

PS3 results (simulator: py21cmFAST)

Marginalised 1D probability for the neutral fraction for all teams (lines), compared with the input range (shaded area)

Top scoring teams

  1. Modern_SEarCH

  2. HIMALAYA

  3. YEYE

  4. Traditional SEarCH


IM1 results (simulator: py21cmFAST)

Marginalised 1D probability for the neutral fraction for all teams (lines), compared with the input range (shaded area)

Top scoring teams:

  1. YEYE

  2. HIMALAYA

  3. Traditional_SEarCH, Modern_SEarCH

© SKAO 2022SKASDC3 (at) skao.intData Protection Notice
Report abuse
Page details
Page updated
Report abuse